Current 409 Valor Hardtop Cross-section

Cross-section tested at 70 mph (31.2928 m/s) in COMSOL at three different angles of attack.

Angle of Attack, α (degrees)	0°	2.5°	5°
Lift (N/m)	1131.9	2237.8	3241.5
Drag (N/m)	32.498	49.169	142.84

N	ACA 6409 Airfoil, 25% thic	kness cross-section	
Cross-section	tested at 70 mph (31.2928 m/s) in CON	ASOL at three different angles of attack.	
Angle of Attack, α (degrees)	0°	2.5°	5°
Lift (N/m)	646.66	1893.9	3129.3
Drag (N/m)	12.826	51.620	194.58

At all angles of attack, the current hard top cross-section generates more lift than a NACA 6409 airfoil at 25% thickness.

At $\alpha = 0^{\circ}$, the NACA 6409 @ 25% thickness generates lower drag than the current hardtop. At all other angles of attack, the current hardtop generates less drag than the NACA 6409 at 25% thickness.

Current Hardtop Cross-Section @ $\alpha = 0^{\circ}$

-intop1(spf.T_stress	x) (N/m) -intop1(spf.T_stressy	ssy) (N/m)
-32.498	1131.9	

Current Hardtop Cross-Section @ $\alpha = 2.5^{\circ}$

Current Hardtop Cross-Section @ $\alpha = 5^{\circ}$

NACA 6409 25% Thickness C.S. @ $\alpha = 0^{\circ}$

NACA 6409 25% Thickness C.S. @ $\alpha = 2.5^{\circ}$

NACA 6409 25% Thickness C.S. @ $\alpha = 5^{\circ}$

